A survey of Lanczos procedures for very large real ‘symmetric’ eigenvalue problems
نویسندگان
چکیده
منابع مشابه
An Implicitly Restarted Lanczos Method for Large Symmetric Eigenvalue Problems
The Lanczos process is a well known technique for computing a few, say k, eigenvalues and associated eigenvectors of a large symmetric n×n matrix. However, loss of orthogonality of the computed Krylov subspace basis can reduce the accuracy of the computed approximate eigenvalues. In the implicitly restarted Lanczos method studied in the present paper, this problem is addressed by fixing the num...
متن کاملThick-Restart Lanczos Method for Symmetric Eigenvalue Problems
For real symmetric eigenvalue problems, there are a number of algorithms that are mathematically equivalent, for example, the Lanczos algorithm, the Arnoldi method and the unpreconditioned Davidson method. The Lanczos algorithm is often preferred because it uses signiicantly fewer arithmetic operations per iteration. To limit the maximum memory usage, these algorithms are often restarted. In re...
متن کاملA fast wavelet-based Lanczos decomposition for large eigenvalue problems
The simple Lanczos process is very eeective for nding a few extreme eigenvalues of a large symmetric matrix. The main task in each iteration step consists in evaluating a matrix-vector product. It is shown in this paper how to apply a fast wavelet-based product in order to speed up computations. Some numerical results are given for the simple case of the Harmonic Oscillator.
متن کاملThe Spectral Transformation Lanczos Method for the Numerical Solution of Large Sparse Generalized Symmetric Eigenvalue Problems
A new algorithm is developed which computes a specified number of eigenvalues in any part of the spectrum of a generalized symmetric matrix eigenvalue problem. It uses a linear system routine (factorization and solution) as a tool for applying the Lanczos algorithm to a shifted and inverted problem. The algorithm determines a sequence of shifts and checks that all eigenvalues get computed in th...
متن کاملTRPL+K: Thick-Restart Preconditioned Lanczos+K Method for Large Symmetric Eigenvalue Problems
The Lanczos method is one of the standard approaches for computing a few eigenpairs of a large, sparse, symmetric matrix. It is typically used with restarting to avoid unbounded growth of memory and computational requirements. Thick-restart Lanczos is a popular restarted variant because of its simplicity and numerically robustness. However, convergence can be slow for highly clustered eigenvalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1985
ISSN: 0377-0427
DOI: 10.1016/0377-0427(85)90006-8